Snøhvit CO₂ Storage Project FWP-FEW0174 Task 4

Laura Chiaramonte, Joshua A. White, Whitney Trainor-Guitton and Yue Hao

Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

> U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013

Lawrence Livermore National Laboratory

Outline

- Benefit to Program
- Project Goals & Objectives
- Technical Status
- Summary & Accomplishments
- Appendix

Benefit to the Program

- The research project is focused on mechanical deformation in response to CO₂ injection at Snøhvit
- An understanding of hydromechanical interactions is essential for effective prediction and monitoring of reservoir performance
- This program meets the Carbon Storage Program goal to support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent

Project Overview: Goals and Objectives

- The project goal is to understand hydromechanical impacts of CO₂ injection into a complex storage reservoir:
 - Study the formation/enhancement of migration pathways within the reservoir
 - Validation of results based on monitoring and characterization data provide by Statoil
 - This work can guide management and monitoring practices for sub sea floor injections and complex geologic structures
 - Success is tied to ability to reproduce and predict behavior given available monitoring and characterization data, and provide useful guidance for the field operator

Technical Status

- Schedule was reset by sponsor to October 1st, FY2013, due to contracting & data transfer delays
- First stage of project was completed:
 - Discrete Fault Activation Analysis under Stress
 Uncertainty
 - Preliminary Hydromechanical Analysis Reservoir Pressure Response
- New data received on July 2013

Accomplishments to Date

- Pre-study completed
- Site characterization and geo-model completed
- Discrete fault activation & stress uncertainty analysis complete
- Preliminary analysis of pressure response in reservoir completed

Snøhvit CO₂ **Project**

- Gas fields with a 5 8 % CO_2 content, which needs to be reduced before liquefaction
- Separated CO₂ was re-injected into Tubåen Fm. at ~2600m depth

Injection began in 2008, but in

storage capacity in Tubåen

Have since moved injection to

was lower than expected.

2010 Statoil announced

Pipeline • Terminal • Field

Structural diagram of Hammerfest Basin

Lawrence Livermore National Laboratory

another formation

Snøhvit Hammerfest Norwa

Stratigraphy

- Storage target: Tubåen Fm. ~2600 m depth.
 - 45-130 m clastic wedge (over ~50 km)
 - Individual channels & subordinate shales
 - Porosity 1-16%, Permeability 130-880 mD
- Caprock: Nordmela Fm.
 - Porosity ~13%, Permeability 1-23 mD

- Delta plain depositional environment, with fluvial distributary channels & some marine-tidal influence
- Highly variable sandstone facies, interbedded with siltstones & mudstones

Structural Configuration

Top of Fuglen Fm. – depth map

Lawrence Livermore National Laboratory

Structural complexity of the site raises many interesting hydromechanical questions

- 1. What is the role of the bounding faults at the site?
 - Are they reservoir seals or potential leakage pathways? Is there a risk of contaminating the producing gas?
- 2. Why was storage capacity lower than expected?
 - Is it a completely compartmentalized system? Is it a function of the depositional setting? What is the role of observed faults/fractures?

1.- What is the role of the bounding faults

- Fault Stability Analysis: Coulomb Criteria considering thermo poro-elasticity effects
- Uncertainty Analysis using PSUADE (Problem Solving environment for Uncertainty Analysis and Design Exploration

0 1000 2000 3000 4000 5000

Stress Uncertainty

Up to 90 degrees variations in reported S_{Hmax} Azimuths

Base Case modeled as NS S_{Hmax} Azimuth Strike Slip regime

Fault Stability Analysis indicates fairly stable bounding faults (NS S_{Hmax})

Fault traces color-coded by amount of extra pressure (P_{cp}) necessary to initiate slip (Base Case scenario: SS environment with NS S_{Hmax} direction)

Uncertainty Analysis - PSUADE

- 13 Parameters
- 1000 samples produced with Latin hypercube sampling method

Variable	BC	Min	Max	Units	
S _v	60.6	51.5	69.7	MPa	
S _{hmin}	43	38.6	47.2	MPa	
S _{Hmax}	65	60.6	74.3	MPa	
Pp	28	25.2	30.8	MPa	
μ	0.6	0.35	0.85		
С	0	0	5		
$\alpha^* dP_p$	0	0	10	MPa	
v	0.25	0.25	0.35		
Т	95	85	105	°C	
Е	35	22	36	GPa	
αΤ	1.5e ⁻⁵	1e ⁻⁶	1.5e ⁻⁵	1/°C	
Fault ang	-85	-55	-90	o	
S _{Hmax} Az	0	345	105	0	

UQ Analysis indicates S_{Hmax} Az as main uncertainty

Faults ~ 25-35% less stable with EW S_{Hmax}

Lawrence Livermore National Laboratory

Faults ~ 25-35% less stable with EW S_{Hmax}

Lawrence Livermore National Laboratory

LLNL-PRES-642912-DRAFT

Refined Uncertainty Analysis – 12 variables (no S_{Hmax} Az)

Example: sensitivity indexes for Fault 10

Stress tensor components, fault ang, μ , C, Pp and ΔP indicated as the most influential parameters

2.- Why was storage capacity lower than expected

Previous Analysis (Hansen et al. 2012)

Figure: 4D difference amplitude maps, lower perforation, from (Hansen et al, 2012). Left: 2003-2009, Right: 2009-2011.

- 4D seismic reveals distinct channels & vertical stratification
- Lower perforation taking ~80% of the injection

Previous Analysis (Hansen et al. 2012)

- Previous falloff analyses suggested flow barriers at 110m, 110m, and 3000m from injector
- PVT challenges encountered using gauge ~850m above reservoir (2009 data)

Is this a closed reservoir? Does rate, pressure & temperature history imply changes in injection behavior?

Examine entire rate, pressure, and temperature history from the gauge at 1782 mTVDss

Lawrence Livermore National Laboratory

Approach: Superposition Analysis

- Multi-rate injections are difficult to analyze.
- Can often use the principle of superposition to simplify the analysis (singlephase approximation).
- Given pressure and rate history, we solve for a "characteristic" pressure curve (as a linear least squares problem).

Single rate:
$$p(t) = q \times p_C(t)$$

Multi-rate: $p(t) = a(q_{i+1} - q_i) \times p_C(t - t_i)$

Lawrence Livermore National Laboratory

Best-fit Results

- All data used for calibration, except early salt-precipitation period
- Fit with one p_c(t) curve

Best-fit Results

 Resulting p_C(t) represents an equivalent constantrate injection.

Barrier indications in the 2009 falloff

- Superposition provides additional data beyond 2009 falloff period (779 vs. 142 days).
- Multiple barriers appear early in the falloff history, but no strong evidence of additional barriers appearing after ~100 hours.

Observations from Pressure Analysis

- Reservoir does not exhibit significant changes in injection behavior over time. No evidence of large geomechanical or permeability changes.
- Reservoir does not appear completely closed, and had not reached pseudo-steady state.

4D seismic analysis suggests stratigraphic compartmentalization, can it also have a structural component?

Hansen et al, 2012

Hypothetical sub-seismic faults (Az = $335-355^{\circ}$) expected "permeable" under NS S_{Hmax}

Reservoir does not appear completely closed, is it possible a local vertical migration at F10?

Hansen et al, 2012

F10 expected "sealing" under NS $S_{Hmax,}$ but "permeable" with EW S_{Hmax}

Lawrence Livermore National Laboratory

Summary

- Strong stress uncertainties difficult predictions
- Faults fairly stable under "most likely" stress state: SS & NS S_{Hmax}. Caprock failure would happen before fault reactivation. Under those conditions, it is unlikely that a theoretical sub-seismic fault could act as flow barrier
- Faults are ~ 30% less stable with EW S_{Hmax}, where several segments are close to critically stressed.
 Fault reactivation could happen before caprock failure if injection continues with risk of gas contamination.

Summary, cont.

- Superposition analysis provides a complement to standard falloff testing, allowing one to analyze multirate pressure data over long periods
- Reservoir does not exhibit significant changes in injection behavior over time. No evidence of large geomechanical or permeability changes over time
- Reservoir does not appear completely closed, and had not reached pseudo-steady state. New storage volume was still being accessed at end of injection
- Potential structural component in compartmentalization/fluid migration difficult to assess due to stress orientation uncertainty

Acknowledgments

- Dataset and funding provided by Statoil and the Snøhvit Production License partners
- Phil Ringrose, Olav Hansen, Bamshad Nazarian for useful discussions and contributions
- This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We acknowledge funding from the U.S. Department of Energy, Fossil Energy.

Organization Chart

Lawrence Livermore National Laboratory

Gantt Chart

	Task	FY2012	FY2013		FY2014		
4.0	Pre-study	(complete)					
4.1	Site characterization & geomodel			•			
4.2	Coupled hydromechanical analysis				•		•
4.3	Geomechanical modeling						
	Forecasting fault failure				•		
	Caprock deformation & fracture					•	•

Bibliography

Journal Papers in Preparation:

- Chiaramonte, L., White, J.A. and Trainor-Guitton, W, Effect of Stress Field Uncertainty on Modeling Geomechanics and Seal Integrity for CO₂ Storage Sites, (in preparation)
- White, J.A. and Chiaramonte, L., Pressure Analysis, (in preparation)

Peer Reviewed Papers:

- Chiaramonte, L., White J.A., Hao, Y., and Ringrose, P., 2013, Probabilistic Risk Assessment of Mechanical Deformation due to CO₂ Injection in a Compartmentalized Reservoir, Proceedings of the 47th U.S. Rock Mechanics / Geomechanics Symposium, San Francisco, CA, 23-26 June
- Chiaramonte, L., White J.A., and Johnson, S., 2011, Preliminary geomechanical analysis of CO₂ injection at Snøhvit, Norway. Proceedings of the 45th U.S. Rock Mechanics / Geomechanics Symposium, San Francisco, CA, 26-29 June

